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Example question

3: Phosphatidyl inositol (PI) is an important signaling lipid. Which of the following statements are true
about this important molecule.
A: Pl can be phosphorylated on the sugar group (Inositol) to create 8 different kinds of PI’s
B: Phosphorylation of PI’s is irreversible.
C: Pl can serve as a docking complex for proteins to associate with phospholipid membrane
D: The distribution of phosphorylated PI’s in the phospholipid membranes of the cell is random
E: Thanks to the extracellular location of the functional headgroup, Pl can interact with AKT
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Example question

22: A nuclear localization signal is always located at the N-terminus of a protein
True / False
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Q&A



In slide 46, it is mentioned that with DNA repair, the cell
death could be avoided even if a death signal has already
been received. How is this regulated? What gives the cell
enough time to repair its DNA?
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DNA Damage Sources:
1. Endogenous: ROS, RNS, metabolism, inflammation,

replicationstress

2. Exogenous: y-ray, x-ray, UV, mutagens, toxins, virus
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Figure 17-62 How DNA damage

arrests the cell cycle in Gi. When DNA

is damaged, various protein kinases
are recruited to the site of damage and
initiate a signaling pathway that causes
cell-cycle arrest. The first kinase at

the damage site is either ATM or ATR,
depending on the type of damage.
Additional protein kinases, called Chk1
and Chk2, are then recruited and

activated, resulting in the phosphorylation

of the transcription regulatory protein
p53. Mdm2 normally binds to p53 and
promotes its ubiquitylation and destruc
in proteasomes. Phosphorylation of p5:
blocks its binding to Mdm2; as a resullt,
p53 accumulates to high levels and
stimulates transcription of numerous ge
including the gene that encodes the Ck
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Figure 20-27 Modes of action of the
p53 tumor suppressor. The p53 protein
is a cellular stress sensor. In response to
hyperproliferative signals, DNA damage,
hypoxia, telomere shortening, and various
other stresses, the p53 levels in the cell
rise. As indicated, this may either arrest
cell cycling in a way that allows the cell to
adjust and survive, trigger cell suicide by
apoptosis, or cause cell “senescence”—an
irreversible cell-cycle arrest that stops
damaged cells from dividing.
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Figure 17-63 Cell-cycle arrest or
apoptosis induced by excessive
stimulation of mitogenic pathways.
Abnormally high levels of Myc cause the
activation of Arf, which binds and inhibits
Mdm2 and thereby increases p53 levels
(see Figure 17-62). Depending on the cell
type and extracellular conditions, p53 then
causes either cell-cycle arrest or apoptosis.



Are the Mitofusins 1 and 2 interchangeable? We saw this is a
possibility in the exercises, but is that also the case in
reality?



Association with the ER

2. Are the Mitofusins 1 and 2 interchangeable? We saw this
is a possibility in the exercises, but is that also the case in

reality? Yes, Mfn1 and Mfn2 have high
conservation in the domains
necessary for mitochondrial
fusion. Thus, they have some

A T — . .
(A) [ E T functional redundancy.
GTPase (G1-G5) HR1 ™ HR2
hMfn1(741aa) 82-288 346-401 596-630 673-728
hMin2(757aa) 103-309 366-422 615-648 693-747
mitochondrion 1
(B)

mitochondrion 2



3. In slide 49, there is a gel electrophoresis image showing
how the DNA is fragmented by CAD. It is described that, due
to CAD cutting the linker DNA, a characteristic ladder
pattern appears. However, this would suggest that the
fragments are of different sizes. How is this possible if
nucleosomes with linker DNA all have ~180bp of DNA (slide
62)?
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Figure 18-4 DNA fragmentation during apoptosis. (A) In healthy cells, the endonuclease CAD associates with its inhibitor,
iCAD. Activation of executioner caspases in the cell leads to cleavage of iCAD, which unleashes the nuclease. Activated CAD
cuts the chromosomal DNA between nucleosomes, resulting in the production of DNA fragments that form a ladder pattern
(see B) upon gel electrophoresis. (B) Mouse thymus lymphocytes were treated with an antibody against the cell-surface death
receptor Fas (discussed in the text), inducing the cells to undergo apoptosis. DNA was extracted at the times indicated above
the figure, and the fragments were separated by size by electrophoresis in an agarose gel and stained with ethidium bromide.
Because the cleavages occur in the linker regions between nucleosomes, the fragments separate into a characteristic ladder
pattern on these gels. Note that in gel electrophoresis, smaller molecules are more widely separated in the lower part of the gel,
so that removal of a single nucleosome has a greater apparent effect on their gel mobility. (C) Apoptotic nuclei can be detected
using a technique that adds a fluorescent label to DNA ends. In the image shown here, this technique was used in a tissue
section of a developing chick leg bud; this cross section through the skin and underlying tissue is from a region between two
developing digits, as indicated in the underlying drawing. The procedure is called the TUNEL (TdT-mediated dUTP nick end
labeling) technique because the enzyme terminal deoxynucleotidy! transferase (TdT) adds chains of labeled deoxynucleotide
(dUTP) to the 3'-OH ends of DNA fragments. The presence of large numbers of DNA fragments therefore results in bright
fluorescent dots in apoptotic cells. (B, from D. Mcllroy et al., Genes Dev. 14:549-558, 2000. With permission from Cold Spring
Harbor Laboratory Press; C, from V. Zuzarte-Luis and J.M. Hurlé, Int. J. Dev. Biol. 46:871-876, 2002. With permission from
UBC Press.)
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| have a few questions for Wednesday’s session:

1.Last week, we discussed question 7.B, but I’m not sure |
fully understood the correction. Would it be possible to go
over it again in more detail?

The presence of introns in organellar genes is not surprising
since similar introns have been found in related genes from
bacteria whose ancestors are thought to have given rise to
mitochondria and chloroplasts. (it was a True or False
question) and here is the answer : False. The presence of
introns in organellar genes is surprising precisely because
corresponding introns are so uncommon in related bacterial
genomes.



How did these compartments come to be?

cell plasma PHAGOCYTOSIS AND
wall  membrane DIGESTION OF OTHER
PROKARYOTES (BOTH
LOSS OF RIGID CELL ARCHAEAL AND BACTERIAL)
WALL IN ANCIENT GREATLY INCREASES
ANAEROBIC ARCHAEON HORIZONTAL GENE
FACILITATES HORIZONTAL TRANSFERS, SPEEDING
GENE TRANSFERS EVOLUTIONARY PROCESSES
genomic DNA

of archaeon

MEMBRANES INCREASINGLY ENCLOSE THE CHROMOSOME
OF ANAEROBIC ARCHAEON TO HELP PROTECT IT

AEROBIC BACTERIUM
TAKEN UP INTACT TO
LIVE SYMBIOTICALLY AS

A PROMITOCHONDRION nucleus endoplasmic reticulum

developing
nuclear

envelope DEVELOPMENT OF MULTIPLE

MITOCHONDRIA PROVIDES
ENERGY FOR THE EVOLUTION
OF ADDITIONAL MEMBRANE

SYSTEMS AND MUCH EUE;‘&‘%TIC
LARGER CELLS CELLS ARE
AEROBIC
promitochondrion cytosol mitochondrion
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Bacterial genomes are
quite devoid of introns,
so there is very little/no
splicing.

Hence to no introns
would be present.

In engulfed organelles,
why would there be new
introduction of introns in
genes that were
functioning?



Some of the chapters we’ve covered are connected. Would
it be possible to get an overview of which chapters are linked
and how they relate to each other?



It is all connected!

Membranes (structure) (chapter 10)
Membrane transport (chapter 11)
Origin and transmission of mitochondria, and cell death (Chapter 14&18)
Organelles and transport (chapters 12 and 13)
Cellular communication (chapter 15)
Cytoskeleton (chapter 16)

Cellular junctions (chapter 19)
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Connection Chapter 16 & 19.Cytoskeleton & ECM
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Connection Chapter 10, 12, 13.Lipids & Membrane identity
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Connection Chapter 10, 11, 15.

'.q von Ballmoos C, et al. 2009.
Annu. Rev. Biochem. 78:649-72

Membrane spanning proteins & signaling
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Connection Chapter 12, 13, 19. Vesicle transport & ECM
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More Q&A (?)



